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Abstract Based on our preliminary analysis of the Hamiltonian formulation of the first or-
der Einstein-Cartan action (arXiv:0902.0856 [gr-qc] and arXiv:0907.1553 [gr-qc]) we derive
the Darboux coordinates, which are a unique and uniform change of variables that preserve
equivalence with the original action in all spacetime dimensions higher than two. Consider-
able simplification of the Hamiltonian formulation using the Darboux coordinates, as com-
pared with the direct analysis, is explicitly demonstrated. Even an incomplete Hamiltonian
analysis in combination with known symmetries of the Einstein-Cartan action and the equiv-
alence of Hamiltonian and Lagrangian formulations allows us to unambiguously conclude
that the unique gauge invariances generated by the first class constraints are translation and
rotation in the tangent space. Diffeomorphism invariance, though a manifest invariance of
the action, is not generated by the first class constraints of the theory.

Keywords Einstein-Cartan gravity · Hamiltonian · Poincaré gauge theory

1 Introduction

In this paper we continue our search for the gauge invariance of the Einstein-Cartan (EC)
action using the Hamiltonian formulation of its first order form, which is valid in all space-
time dimensions (D) higher than two (D > 2). This investigation was started in [1–3]. The
complete Hamiltonian analysis of the EC action when D = 3, including the restoration of
gauge invariance, was performed in [1] because of the simplification of the calculations
which appears in D = 3. In dimensions D > 3 the calculations are much more involved and
were not completed, although the preliminary results were reported in [2]. The main goal
of the present paper is the derivation of the Darboux coordinates which, as we will show,
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drastically simplify the calculations in the first steps of the Dirac procedure [4–6]. We hope
that additional simplifications will also occur in the later steps and that it will be possible to
complete the Hamiltonian analysis for D > 3 and give the unique answer to the question:
what is the gauge symmetry generated by the first class constraints.

The Hamiltonian formulation of the EC action is an old and apparently solved problem.
It is claimed in many articles and included in monographs that the canonical formulation of
the EC theory has already been completed and its gauge symmetries are Lorentz invariance
and diffeomorphism (very often only the so-called “spatial” diffeomorphism). The reasons
for reconsidering this claim are the following.

(A) The first order form of the EC action is a uniform formulation valid in all D > 2
dimensions and it seems to us very suspicious that such a drastic change of gauge invari-
ance in different dimensions is possible, e.g. from Poincaré in the three-dimensional case
(both gauge parameters with internal indices) [1, 7] to Lorentz (internal) plus diffeomor-
phism (external) when D = 4, as is stated in many papers on Hamiltonian formulations of
tetrad gravity and especially in papers and monographs on Loop Quantum Gravity (LQG)
[8, 9], where the spatial diffeomorphism constraint is always present irrespective of what
variables are used. But it is clear even from the first steps of the Dirac procedure, as shown
in [1, 2], that diffeomorphism (neither spatial diffeomorphism, as in LQG, nor full space-
time diffeomorphism) cannot be a gauge symmetry generated by the first class constraints
of the EC action, not only in D = 3, but in any dimension. The claim that the spatial dif-
feomorphism is a gauge symmetry of tetrad gravity is the result of a non-canonical change
of variables (see Sect. V of [10]) that was “justified” only by such “arguments” as “conve-
nience” and a desire to accommodate the “expected” results. Of course, diffeomorphism is
an invariance of the EC action (as it is manifestly generally covariant), so are the rotation
and translation in internal space [11]; in fact, many other invariances can be found in the
Lagrangian formalism by constructing differential identities considering, for example, lin-
ear combinations of basic differential identities (see [3]). The statement that the EC action
is invariant under internal translation when D = 3 and is not invariant in dimensions D > 3
is simply wrong as this contradicts known results [11, 12]. The change of gauge symme-
try in the Hamiltonian formulation from internal translation (the gauge parameter has an
internal index) to diffeomorphism (the gauge parameter is the “world” vector) does not
seem to be feasible as the first order EC action is formulated uniformly for all dimensions
(D > 2).

Diffeomorphism is one of the invariances of the EC action; but it is not a gauge sym-
metry generated by the first class constraints [1, 2]. The gauge symmetry is a characteristic
of a theory and in a Hamiltonian formalism it must be uniquely derived using the Dirac
procedure. According to Dirac’s conjecture [4] all the first class constraints of the Hamil-
tonian formulation are responsible for the gauge invariance and any gauge symmetry must
be derivable from first class constraints [13] using, for example, the Castellani algorithm
[14]. Only after that is it possible to answer the question posed by Matschull [15] for D = 3
(but which is equally well relevant in all dimensions): “what is a gauge symmetry and what
is not”. We are not aware of such a derivation for the Hamiltonian formulation of the EC
action, similar to what was done for the Einstein-Hilbert, metric, action [16, 17], where full
spacetime diffeomorphism is indeed the gauge symmetry. Some arguments that so-called
spatial diffeomorphism is a gauge symmetry have been made; but this is not even a sym-
metry of the EC action, which is invariant under the full spacetime diffeomorphism, but not
only under its spatial part separately.

(B) It was shown some time ago that the EC action is invariant under “translations and
rotations in the tangent spaces” [11] with the algebra of generators that has “a more general
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group structure than the original Poincaré group” [12]. It differs from the original Poincaré
group for D > 3 only by having a non-zero commutation relation between two translational
generators [11, 12]. Moreover, the explicit form of the transformations of fields were given
with two parameters that correspond to internal translation and rotation (see e.g. [12, 18]).
These results contradict the statement that the EC Lagrangian is not invariant under transla-
tion. Recently (without referring to the Hamiltonian formalism) translational and rotational
invariances of the first order EC action were derived in [3] using the iterative procedure that
allows one to construct the simplest differential identities from the Euler derivatives which
follow from the EC Lagrangian. This procedure is based on the Noether second theorem [19]
that allows us to relate differential identities to the corresponding transformations of fields.
To find a gauge invariance of the EC action, a Hamiltonian analysis is needed because it
gives a unique answer to the question: what is the gauge symmetry generated by the first
class constraints. However, the choice of what to call a gauge invariance is often based on
different arguments, i.e. according to [20] “it is partly possible (and physically more plausi-
ble) to unify the two local gauge groups—Poincaré on the frames and general covariance”.
Is it possible to have the gauge group that unifies Poincaré and diffeomorphism? The La-
grangian and Hamiltonian formalisms are equivalent; and in the Hamiltonian formalism, the
gauge invariance must be derived from first class constraints [13], and not be imposed from
the outset. The number of constraints not only fixes the number of gauge parameters (which
equals to the number of primary first class constraints) and their tensorial character, but it
also defines the number of degrees of freedom (found from the number of all constraints)
[21]. Thus, internal translation and diffeomorphism cannot simultaneously belong to the
same gauge group, as the number of constraints needed to accommodate both symmetries
leads to a negative number of degrees of freedom, which is physically not plausible. We
need the Hamiltonian analysis to isolate a unique gauge invariance of an action, out of many
other invariances, i.e., the invariance that follows from the first class constraints. We do not
rely on geometrical, or physical, or any other seemingly plausible argument; and our goal is
to reveal the gauge symmetry of the EC theory using the Hamiltonian method.

(C) The Hamiltonian analysis of the first order form of the EC action in some cases
is specialized to some particular dimension, e.g. [7, 22–25]. However, such formulations
might either destroy or miss some general features of the original action, which are valid in
all dimensions (except the special case D = 2). For example, when constructing Darboux
coordinates for the EC action it is artificial to introduce such variables separately for each
dimension (as [25]); they have to be common for all dimensions as is the original EC action.

We are looking for Darboux coordinates which are valid in all dimensions D > 2. This
is not a purely mathematical interest to find the most general formulation; but it has a prac-
tical reason: the EC action is formulated in all dimensions, and so the correct methods have
to produce meaningful results in all dimensions simultaneously. This will guarantee that
nothing is missing or misinterpreted in the physically important four-dimensional case. Ex-
amples of formulations that were designed for only particular dimensions are: when D = 3,
the treatment of the EC action was based on similarities (but not equivalence [15]) with the
Chern-Simons action [7]; the construction of Darboux coordinates by Bañados and Contr-
eras [25] works only in the D = 4 case and allows for neither the consideration of the D = 3
limit nor generalization on dimensions higher than four. To have the correct Hamiltonian for-
mulation of the EC action and to find its unique gauge invariance in the physically interesting
D = 4 case, we have to perform the analysis using an approach valid in all dimensions. An
important property of using a formulation valid in all dimensions is the possibility to check
the D = 3 limit at all stages of the calculations. The Hamiltonian formulation in the D = 3
case can be carried out without difficulty because of simplifications occurring when D = 3;
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it gives the consistent result and a simple Lie algebra of Poisson brackets (PBs) among the
first class constraints [1]. In higher dimensions we can expect that some modifications of the
Poincaré algebra will appear (we argued in [2] that the only possible modification is the non-
zero PB among two translational constraints, which is exactly what happens in [11, 12]); but
such modifications must vanish in the D = 3 limit. The calculation of constraints and their
PB algebra in the Hamiltonian formulation of the EC action is still quite involved even af-
ter drastic simplification due to introduction of Darboux coordinates; and so the possibility
of checking the consistency of the results by considering the D = 3 limit at all stages of
calculations is extremely important. Thus, we do not specialize our analysis to a particular
dimension.

The construction of Darboux coordinates which are uniform for all dimensions and sim-
plify the Hamiltonian analysis is the main goal of the present article.

The paper is organized as follows. In Sect. 2 we establish notation and provide arguments
to support our expectation that the Darboux coordinates exist for the theory under consid-
eration. In Sect. 3, based on the result of the direct Hamiltonian analysis [2], we derive the
Darboux coordinates. In Sect. 4, we show that introduction of Darboux coordinates allows
one to perform the Lagrangian or Hamiltonian reduction in a much simpler manner than
the Hamiltonian reduction in the direct Hamiltonian approach of [2], and to attack the most
involved calculations: finding PBs among secondary first class constraints (or equivalently,
to prove the closure of the Dirac procedure) which are needed to find gauge transformations
of the EC action in the Hamiltonian formalism. These calculations are briefly outlined. In
particular, using the Dirac brackets, we demonstrate that there is a strong indication that
in all dimensions the PB between translational and rotational constraints are the same and
coincide with the corresponding part of the Poincaré algebra known for the D = 3 case (the
same conclusion was made in [2] using the Castellani algorithm [14]). In Sect. 5 the results
are summarized and the conclusion about the gauge invariance of the EC action is made.
The properties of some combinations of fields that considerably simplify the calculations
are collected in Appendix A. In Appendix B the solution of the equation that arises in the
course of the Lagrangian/Hamiltonian reduction is given.

2 Notation and Expectations

In [2] we considered the Hamiltonian formulation of the Einstein-Cartan action by direct
application of the Dirac procedure to its first order form [26, 27]

IEC = −
∫

dDx e
(
eμ(α)eν(β) − eν(α)eμ(β)

) (
ων(αβ),μ + ωμ(αγ )ων

(γ
β)

)
, (1)

where the covariant N-beins eγ (ρ) and the connections ων(αβ) (ων(αβ) = −ων(βα)) are treated
as independent fields in all spacetime dimensions (D > 2), and e = det(eγ (ρ)).1 Greek let-
ters indicate covariant indices α = 0,1,2, . . . , (D − 1). Indices in brackets (. . .) denote
the internal (“Lorentz”) indices, whereas indices without brackets are external or “world”
indices. Internal and external indices are raised and lowered by the Minkowski tensor
η̃αβ = (−,+,+, . . .) and the metric tensor gμν = eμ(α)e

(α)
ν , respectively (we use a tilde for

1Usually variables eγ (ρ) and ων(αβ) are named tetrads and spin connections, but such names are specialized
for D = 4. As we consider the Hamiltonian formulation in any dimension (D > 2), we will call eγ (ρ) and
ων(αβ) N-beins and connections, respectively.
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any combination with only internal indices and do not use brackets in such cases, except
to indicate antisymmetrization in pairs of indices). N-beins are invertible: eμ(α)eμ(β) = δ̃α

β ,
eμ(α)eν(α) = δμ

ν .
The Lagrangian density of (1), after integration by parts, can be written in the following

form

LEC

(
eμ(α),ωμ(αβ)

) = eBγ (ρ)μ(α)ν(β)eγ (ρ),μων(αβ) − eAμ(α)ν(β)ωμ(αγ )ων
(γ

β), (2)

where the functions Aμ(α)ν(β) and Bγ(ρ)μ(α)ν(β) are defined as

Aμ(α)ν(β) = eμ(α)eν(β) − eν(α)eμ(β),
δ

δeγ (ρ)

(
eAμ(α)ν(β)

) = eBγ (ρ)μ(α)ν(β). (3)

The properties of the functions Aμ(α)ν(β) and Bγ(ρ)μ(α)ν(β) and their further generations
that considerably simplify the calculations are collected in Appendix A.

For the Hamiltonian formulation, where we have to separate spatial and temporal indices
(not separating spacetime itself into space and time),2 we use 0 for an external “time” index
(and (0) for an internal “time” index) and Latin letters for “spatial” external indices k =
1,2, . . . , (D − 1) ((k) for “spatial” internal indices).

In Progress Report [2] (the references to equations from [2] are indicated as (R#)) we
demonstrated that after performing the Hamiltonian reduction (i.e. eliminating part of the
variables by solving the second class constraints) in all dimensions, the canonical part of
the total Hamiltonian is a linear combination of secondary constraints (called “rotational”
χ0(αβ) and “translational” χ0(σ ) constraints, see (R152))

Hreduced

(
eμ(ρ), π

μ(ρ),ω0(αβ),
0(αβ)

) = π0(ρ)ė0(ρ) + 0(αβ)ω̇0(αβ) + Hc, (4)

where the canonical Hamiltonian (up to a total spatial derivative) is

Hc = −ω0(αβ)χ
0(αβ)

(
eμ(ρ), π

k(ρ)
) − e0(σ )χ

0(σ )
(
eμ(ρ), π

k(ρ)
)
. (5)

This form of the Hamiltonian is not new and appeared for the first time in [29], but it
was based on very general arguments and the explicit form of constraints was not given.
For D = 4 the reduced Hamiltonian3 with the same set of canonical variables (4) was ob-
tained in [27], but the closure of the Dirac procedure was considered only after the authors
switched to a different set of variables: lapse and shift functions. In later works this form
of the Hamiltonian (5) can be found at most on some intermediate steps of the Hamiltonian
analysis (i.e. see [24, 25]) after which the change of initial variables is performed, e.g. from
eμ(ρ) to ek(n) and lapse and shift functions [31]. Usual arguments for such changes are “it is

2If one writes, for example, the equations of motion of a covariant theory in components the covariance is
not lost, though it is not manifest. The common statement as in [28]: “Unfortunately, the canonical treatment
breaks the symmetry between space and time in general relativity and the resulting algebra of constraints is
not the algebra of four diffeomorphism” is groundless. In the Hamiltonian formulation of General Relativity
the covariance is not manifest, but it is not broken as the gauge symmetry of the Einstein-Hilbert action,
diffeomorphism, is recovered in a manifestly covariant form for the second order [16, 17] and the first order
[10] formulations.
3This is the result of the Hamiltonian reduction, i.e. solving second class constraints and eliminating the
corresponding pairs of canonical variables. The reduced Hamiltonian obtained in such a way should not be
confused with reduction based on solving first class constraints [30], an operation that contradicts the Dirac
procedure.
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more convenient” [32] or “it is useful” [27] but canonicity was never discussed. We showed
in [10] that the change of variables from eμ(ρ) to ek(n) and lapse and shift functions is not
canonical.

All the PBs among primary (π0(ρ),0(αβ)) and among primary and secondary constraints
(χ0(αβ), χ0(σ )) are zero; and the PB between two rotational constraints in all dimensions is

{
χ0(αβ), χ0(μν)

}
D>2

= 1

2
η̃βμχ0(αν) − 1

2
η̃αμχ0(βν) + 1

2
η̃βνχ0(μα) − 1

2
η̃ανχ0(μβ), (6)

which corresponds to Lorentz rotation in the tangent space. It is necessary to find the re-
maining PBs: {

χ0(αβ), χ0(ρ)
}

D>3
= ?, (7)

{
χ0(ρ), χ0(γ )

}
D>3

= ?. (8)

In the D = 3 case, the calculation of (7)–(8) is simple [1] and leads to:

{
χ0(αβ), χ0(ρ)

}
D=3

= 1

2
η̃βρχ0(α) − 1

2
η̃αρχ0(β), (9)

{
χ0(ρ), χ0(γ )

}
D=3

= 0, (10)

i.e. the PB algebra of secondary constraints (6), (9) and (10) is a true Poincaré algebra;
and a complete set of first class constraints when using the Castellani algorithm leads to
the rotational and translational invariance in the tangent space [1]. In higher dimensions,
even knowledge only of the primary constraints is enough to conclude that it is impossible
to have diffeomorphism invariance following from the first class constraints and the gauge
parameters must possess internal indices, i.e. they lead to rotation and translation in the
internal space. Whether it is true or modified Poincaré algebra, can only be found after the
PBs (7)–(8) are calculated.

In higher dimensions, calculation of the PBs of (7)–(8) is very laborious because of the
complexity of the constraints [2]. Nevertheless, these PBs are needed to prove closure of
the Dirac procedure, and to find the transformations that are produced by the first class
constraints, i.e. to answer the question (in the Hamiltonian formalism): which symmetry
(from an infinite set of symmetries of the EC action [3]) is the gauge symmetry of the EC
action.

In the conclusion of [2] we discussed possible modifications of the algebra of the PBs
in dimensions D > 3, based on the assumption that despite a more complicated form of
constraints, the algebra of secondary constraints remains Poincaré, as in the D = 3 case,
or becomes the modified Poincaré algebra. We showed that in such cases, the Lagrangian
corresponding to the reduced Hamiltonian (5) remains invariant under the same transforma-
tions. This Lagrangian can be obtained by performing the inverse Legendre transformations
and it gives us just a different first order formulation (with respect to temporal derivatives,
not to spatial) of the original EC theory (see (R162))

Lreduced

(
eμ(α), π

k(ρ),ω0(αβ)

)

= πk(ρ)ėk(ρ) + ω0(αβ)χ
0(αβ)

(
eμ(ρ), π

k(ρ)
) + e0(σ )χ

0(σ )
(
eμ(ρ), π

k(ρ)
)
. (11)

This form of the Lagrangian can also be seen as one which leads directly to the Hamiltonian
formulation. The idea is not new—Dirac used such modifications in metric gravity to modify
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the Lagrangian in order to have simple primary constraints. From the Hamiltonian analysis
further simplifications are found that can be implemented also at the Lagrangian level (see
[33], (4.4.12) and detailed calculations leading to this change in [17]).

In the second order metric gravity there are no second class constraints; and the modi-
fication of the Lagrangian was done by adding some total temporal or spatial derivatives.
In the case of the first order EC action, the situation is more complicated because of the
presence of the second class constraints, which are eliminated in the course of the Dirac
procedure. Equations of motion of (11) cannot be compared with equations for (1) because
we have a different number of variables. In metric gravity if we perform an inverse Legendre
transformation for the Dirac Hamiltonian and eliminate momenta; we will obtain Einstein’s
equations written in second order form. Here, after elimination of momenta, we are left only
with variables eμ(α) and ω0(αβ). So, we either have to eliminate ω0(αβ) to compare with equa-
tions in the second order formulation or solve (1) for the spatial components of connections
ωk(αβ).4 These calculations are very involved compared with the elimination of covariant
connections; but such calculations are a good consistency check of the Hamiltonian. In the
Lagrangian formalism, πk(ρ) as well as ω0(αβ) are just auxiliary variables that can be elim-
inated using their equations of motion (exactly as ωμ(αβ) can be eliminated in (1)), which
leads back to the second order EC action. The Lagrangian (11) gives the first order formu-
lation of the EC action that differs in field content from (1), but they both are equivalent to
the second order form of the EC action (after elimination of auxiliary fields). However, the
first order form (11) leads directly to the Hamiltonian (4).

We can say that the following operations were performed:

LEC → H �⇒
Hamiltonian/Dirac reduction

Hreduced (see (4)) → Lreduced (see (11)). (12)

This suggests (because the Hamiltonian and Lagrangian formalisms must, of course,
lead to the same description of a system if the reductions are performed correctly [35]) that
it should be possible to obtain such a reduced Lagrangian (11) directly from the EC action
that can simplify the calculations of Hreduced compared to the direct calculations [2] per-
formed for (2). Perhaps it can simplify the calculations of the remaining PBs among the
secondary constraints (7)–(8) and the corresponding gauge transformations. Such a modi-
fication of the Lagrangian was discussed by Faddeev and Jackiw in [36]. The existence of
such transformations follows from the Darboux theorem and this is what is called Darboux
transformations or Darboux coordinates; this approach is also known under name “symplec-
tic”. After the paper [36] appeared, the symplectic approach and methods of finding such
transformations attracted considerable interest (see, e.g. [37–39] for more details and sim-
ple examples). Many results that were obtained before by other methods were reconsidered
using this approach (even though sometimes it leads to more complicated calculations than
the original formulations); but in the case we are considering here (the first order EC action),
it leads to simplifications. The equivalence of this approach with the Dirac procedure was
investigated. For some models “non-equivalence” of the Dirac and symplectic methods was
found (see, e.g. [37, 38], where the role of second class constraints was emphasized, and
[39], where the observation of non-equivalence leads the authors to the conclusion about de-
ficiency of the Dirac procedure; some doubts about the symplectic method were expressed

4The Lagrangian obtained in such a way can be called “one and half” order and its Hamiltonian formulation
is also free from second class constraints but calculations with such a Lagrangian and even elimination of
spatial components of connections is not a simple task and does not give advantages compared with the direct
calculations described in [2]. The term “one and half” formulation exists in supergravity [34] but it has a
different meaning.
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in [38]). All examples of non-equivalence are related to the systems with second class con-
straints, which is exactly the case of the EC action. Here we follow the advice of Faddeev
and Jackiw [36]: “If at some stage the elimination is too difficult to carry out, one may resort
to Dirac’s approach”.

We use our preliminary Hamiltonian analysis [1, 2] to find the Darboux transformations.
The term of our interest, “kinetic” part of the Lagrangian, is

eBm(ρ)0(α)k(β)ωk(αβ)em(ρ),0

(based on antisymmetry properties of B: if one external index is temporal, the only non-zero
contributions are possible if the rest of the external indices are spatial).

We want to find such variables that diagonalize the “kinetic part”, and the rest of the
variables can be eliminated. In other words, we are looking for Darboux coordinates such
that

LEC �⇒
Darboux coordinates

LEC(D) �⇒
Lagrangian reduction

Lreduced

with

Lreduced = Lreduced (see (11)) → Hreduced (see (4)). (13)

In the next section, based on the result of the direct Hamiltonian analysis [2], we derive
the following Darboux transformations for spatial connections (the temporal connections
ω0(αβ), as well as the basic variables eγ (ρ), N-beins, remain unaltered)

ωm(αβ) = Nm(αβ)0n(σ)F
n(σ) + ep(α)eq(β)�̂m

(pq) = ωm(αβ)(F ) + ωm(αβ)(�̂), (14)

where Nm(αβ)0n(σ) is a non-linear, algebraic (without derivatives) combination of N-beins,
which is antisymmetric in αβ whose explicit form is given by (43). The field �̂m

(pq) is
antisymmetric (�̂m

(pq) = −�̂m
(qp)) and traceless (�̂m

(mq) = �̂m
(pm) = 0) with all indices

being external (“world”) and spatial. (Here and below we will use “hat” for combinations
with only external indices; and brackets are used to indicate antisymmetrization in pairs of
external indices.) The transformation (14) is invertible, valid in all dimensions (D > 2) and
preserves the D = 3 limit [1]. Note that the number of components of �̂m

(pq) plus Fn(σ) is
the same as for ωm(αβ) in all dimensions (the number of independent components of a field,
using the notation of [33], is indicated by square brackets [field]):

[
ωm(αβ)

] = 1

2
D (D − 1) (D − 1) , (15)

[
Fn(σ)

] = D (D − 1) , (16)

[
�̂m

(pq)
]

= 1

2
D (D − 1) (D − 3)′ (17)

which gives
[
ωm(αβ)

] = [
Fn(σ)

] +
[
�̂m

(pq)
]
. (18)

In the discussion of Darboux coordinates specialized to the D = 4 case appearing in
[25], a different field is introduced, λ̂km = λ̂mk , instead of our �̂m

(pq). The number of com-
ponents is [λ̂km] = 1

2 D(D − 1) which gives the correct balance of fields (see (18)) only in
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the D = 4 case (as in this dimension [λ̂km] = [�̂m
(pq)] = 6), but supports neither a D = 3

limit nor a generalization to higher dimensions. The uniform description of the EC action in
all dimensions is broken by such variables.

In Sect. 4, we show that the transformation (14) not only diagonalizes the “kinetic” part
of the Lagrangian (terms with temporal derivatives of N-beins), as a consequence of the
following properties

eBk(ρ)0(α)m(β)ωm(αβ)(F ) = Fk(ρ), Bk(ρ)0(α)m(β)ωm(αβ)(�̂) = 0; (19)

but it also provides a separation of variables that allows one to perform the Lagrangian or
Hamiltonian reduction in a much simpler manner than in the direct Hamiltonian approach of
[2] (i.e. to eliminate the field �̂m

(pq), which corresponds to solution of the secondary second
class constraints in the Hamiltonian analysis). After elimination of �̂m

(pq), the Hamiltonian
(4)–(5), where only the first class constraints are present, can be simply read off from the
reduced first order Lagrangian (11). The Hamiltonian and the first class constraints that were
obtained after long and cumbersome calculations in the direct approach of [2], which started
from (2), can be found almost immediately when Darboux coordinates are introduced. We
show that simplifications due to the introduction of the Darboux coordinates allows us to at-
tack the most involved calculations in the direct approach: finding the remaining PBs (7)–(8)
among secondary constraints (or equivalently, to prove the closure of the Dirac procedure),
which is needed to find the gauge transformations of the EC action in the Hamiltonian for-
malism. These calculations will be briefly outlined. In particular, we demonstrate that there
is a strong indication that in all dimensions the PB between translational and rotational con-
straints are the same and coincide with the corresponding part of the Poincaré algebra (9)
known for the D = 3 case [1] (the same conclusion was made in [2] using arguments based
on the Castellani algorithm):

{
χ0(αβ), χ0(ρ)

}
D>2

= 1

2
η̃βρχ0(α) − 1

2
η̃αρχ0(β). (20)

3 Derivation of Darboux Coordinates Using a Preliminary Hamiltonian Analysis of
the Einstein-Cartan Action

Direct application of the Dirac procedure to the first order formulation of the Einstein-Cartan
action without specialization to a particular dimension was discussed in [2] where after per-
forming the Hamiltonian reduction (that is, elimination of second class constraints) the total
Hamiltonian (4)–(5) was obtained. However, these calculations are extremely laborious and
on the last stage (closure of the Dirac procedure) become almost unmanageable with the
exception of the D = 3 case [1]. But this preliminary Hamiltonian analysis is indispensable
because it allows us to find variables at the Lagrangian level that drastically simplify the
first steps of the calculations. At the Lagrangian level, only the invertability of the change
of variables is usually checked; but it might happen that the change of variables, even being
invertible, is not canonical in the Hamiltonian formulation and equivalence with the origi-
nal Lagrangian is lost. That is why, in finding new variables, it is important to rely on the
Hamiltonian analysis, especially when working with systems which have first and second
class constraints. We perform a classification of fields according to their relation to the con-
straints arising in the Hamiltonian formulation. This specific role of different fields can also
be used at the Lagrangian level and, in particular, allows one to find Darboux coordinates
that preserve equivalence with the original action and are helpful in reducing the amount
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of calculation to be performed. We will use the classification of fields that corresponds to
the classification of constraints. Primary constraints (using a notion introduced by Ander-
son and Bergmann [40]), especially first class (a notion introduced by Dirac [4]), play the
most important role in the Hamiltonian formulation and define the tensorial character of the
gauge parameters (see Sect. V of [10]); so we call such variables “primary variables” if in
the Hamiltonian formulation the corresponding momenta enter the primary first class con-
straints. For the first order Einstein-Cartan action the primary variables are e0(α) and ω0(αβ)

[2]. Second class constraints (using Dirac’s classification), irrespective of their generation
(primary, secondary, etc.), can be solved for pairs of phase-space variables (this is the Hamil-
tonian reduction). We call such variables “second class variables”, i.e. variables that can be
eliminated at the Hamiltonian level. In the case of the first order Einstein-Cartan action, the
second class variables are ωk(αβ) [2]. Primary and second class variables of the first order EC
action could already be identified from the results of the first gauge-free (without a priori
choice of a particular gauge) Hamiltonian formulation for D = 4 [27]. The importance of
careful preliminary analysis before doing the Lagrange reduction was emphasized in [41]:
“it seems important to develop reduction procedure within Lagrangian formulation—in a
sense similar to the Dirac procedure in the Hamiltonian formulation—that may allow one
to reveal the hidden structure of the Euler-Lagrange equations of motion in a constructive
manner”.

The above classification is crucial because the equivalence of the Lagrangian and Hamil-
tonian methods dictates that if for gauge theories changes involving primary variables are
very restrictive at the Hamiltonian level [10], then the same must be true also at the La-
grangian level. An arbitrary change of variables can lead to the loss of equivalence of two
formulations even for changes which are invertible, that is the sufficient condition only for
nonsingular systems. The second class variables can be eliminated and there is more freedom
to redefine them; but this redefinition has to be such that their elimination does not modify
the PBs for the remaining fields if this is what happens in the Hamiltonian formalism. This
imposes some restrictions; and even in this case, the invertability of transformations is only a
necessary condition. In particular, in the construction of the Darboux coordinates for second
class variables (which can be a complicated expression) they have to be independent of the
primary variables, i.e. their variation with respect to primary variables must be zero in order
to preserve the original independence of primary and second class variables. From these
arguments it is clear that the Hamiltonian analysis is indispensable if one wants to modify
the Lagrangian while keeping its equivalence with the original one (for the gauge-invariant
systems). For example, the original independence of primary and second class variables,
δωk(αβ)

δe0(ρ)
= δωk(αβ)

δω0(ρσ )
= 0, should be preserved even after a change of variables related the Dar-

boux coordinates to ωk(αβ) is introduced.
In this section, we describe the construction of Darboux coordinates for the EC action

and also illustrate the general points mentioned above. Our goal is to find the Darboux coor-
dinates for the second class fields that simplify the Hamiltonian analysis. In [2], in the course
of the Hamiltonian reduction, all ωk(αβ) were eliminated by solving the second class con-
straints: one part by solving the primary constraints and another part that involved primary
and secondary constraints. So, it would be preferable to find such a representation of ωk(αβ)

that separates its components into exactly two classes of variables, as in the Hamiltonian
they were mixed leading up to quite long calculations. We want to decouple them, i.e. we
have to find such a transformation of an “auxiliary”, second class, field ωk(αβ) (Darboux co-
ordinates) that diagonalizes the “kinetic part” and separate variables that can be eliminated
by a Lagrangian reduction. Note that such a separation automatically appears in the D = 3
case [1].
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The direct Hamiltonian analysis of the first order EC action (1) starts by introducing
momenta conjugate to all independent variables. In (2) the only term that has “velocities” is

L
(
eγ (ρ),0

) = eBγ (ρ)0(α)ν(β)eγ (ρ),0ων(αβ) (21)

and so the momenta corresponding to eγ (ρ) are defined as

πγ (ρ) = δL

δeγ (ρ),0
= eBγ (ρ)0(α)ν(β)ων(αβ). (22)

The only non-zero contributions, based on antisymmetry properties of Bγ(ρ)μ(α)ν(β) (see
Appendix A and also [2, 3]), are

πk(ρ) = eBk(ρ)0(α)m(β)ωm(αβ) (23)

or upon separating πk(ρ) and ωm(αβ) into “space” and “time” components

πk(n) = eBk(n)0(p)m(q)ωm(pq) + 2eBk(n)0(q)m(0)ωm(q0) , (24)

πk(0) = eBk(0)0(p)m(q)ωm(pq). (25)

Equations (24) and (25) lead to two primary second class constraints

φk(n) = πk(n) − eBk(n)0(p)m(q)ωm(pq) − 2eBk(n)0(q)m(0)ωm(q0) ≈ 0, (26)

φk(0) = πk(0) − eBk(0)0(p)m(q)ωm(pq) ≈ 0. (27)

After introducing the following notation (see [2])

γ k(n) ≡ ek(n) − ek(0)e0(n)

e0(0)
, γ k(n)ep(n) = δk

p, γ k(n)ek(m) = δ̃n
m,

Ek(p)m(q) ≡ γ k(p)γ m(q) − γ k(q)γ m(p), Im(q)n(r) ≡ 1

D − 2
em(q)en(r) − em(r)en(q),

Ek(p)m(q)Im(q)n(r) = δk
nδ̃

p
r ,

equation (26) (because it is a second class constraint in the Hamiltonian analysis) can be
solved for ωk(q0) (see (R46))

ωk(q0) = − 1

2ee0(0)
Ik(q)m(p)π

m(p) − e0(p)

2e0(0)
Ik(q)m(p)E

m(a)n(b)ωn(ab) + e0(a)

e0(0)
ωk(aq) (28)

and (27) can be written in the following form

πk(0) = −ee0(0)Ek(p)m(q)ωm(pq). (29)

When D = 3 (and only when D = 3) (29) can be solved for ωm(pq) and in equation
(26) the terms proportional to the connections ωm(pq) (with all “space” indices) cancel out,
leading to the separation of these two equations, (26) and (27), into equations containing
only ωm(pq) and ωk(p0), respectively. In addition, when D = 3, some terms in the Lagrangian
disappear (see [1]). That is why the Hamiltonian analysis for D = 3 becomes so simple, and
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so is the derivation of the gauge transformations. In particular, when D = 3, (29) can be
solved because [πk(0)] = [ωm(pq)] = 2 (see [1]). Equation (29) for D = 3 is represented by
two equations for two independent components of ωm(pq): ω1(12) and ω2(12). It can be solved
for ω1(12) and ω2(12); and the solution can be written in “covariant” form

ωk(qp) = 1

2ee0(0)
Ik(q)m(p)π

m(0). (30)

In higher dimensions, (29) cannot be solved in the same way. We showed in [2] that it is
necessary to consider it together with the secondary constraints. In solving these constraints
the combination of the form γ m(n)ωm(pq) = ω̃n

(pq) was very useful (in ω̃n
(pq) all indices are

internal), because the “trace” of this combination5 is proportional to πk(0)

πk(0) = 2ee0(0)γ k(p)ω̃q
(qp). (31)

This suggests the introduction of variables that allow one to single out the contribution of
(31), which is obviously the separation of ω̃n(pq) into the trace, Ṽq , and the traceless, �̃n(pq),
parts

ω̃n(pq) = �̃n(pq) + 1

D − 2

(
η̃npṼq − η̃nq Ṽp

)
, (32)

or equivalently

ωm(pq) = e(n)
m �̃n(pq) + 1

D − 2

(
em(p)Ṽq − em(q)Ṽp

)
(33)

(where we have used ω̃n(pq) = η̃nmω̃m
(pq)).

The variable �̃n(pq) is an antisymmetric (�̃n(pq) = −�̃n(qp)) and traceless (�̃p
(pq) =

η̃np�̃n(pq) = 0) field with all indices being internal. The necessary condition for any field re-
definition (before checking the invertability) is that the number of fields is preserved, which
is satisfied in our case because [ω̃n(pq)] = [�̃n(pq)]+ [Ṽq ] in all dimensions. It is not difficult
to demonstrate the invertability of (33). Contracting (32) with γ m(p) (or equally well with
γ m(q)) we obtain

Ṽp = ω̃q
(qp). (34)

Now contracting (33) with γ m(k) we find

�̃k
(pq) = γ m(k)ωm(pq) − 1

D − 2

(
δ̃k
pṼq − δ̃k

q Ṽp

)
(35)

and using (34)

�̃k
(pq) = γ m(k)ωm(pq) − 1

D − 2

(
δ̃k
pω̃n

(nq) − δ̃k
q ω̃

n
(np)

)
, (36)

or in terms of the original connections

�̃k
(pq) = γ m(k)ωm(pq) − 1

D − 2

(
δ̃k
pγ m(n)ωm(nq) − δ̃k

qγ
m(n)ωm(np)

)
. (37)

5For the original connection ωm(pq) , antisymmetric in internal indices, such a “trace” cannot be defined. We
need combinations with all indices of the same “nature” and ω̃n

(pq) (with all indices being internal) provides
such a combination, which arises naturally in the direct Hamiltonian analysis [2].
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We then see that (33) is invertible. It is also easy to show that (37) is traceless.
We substitute (33) into (28) to express the connection ωk(q0) in terms of new fields

ωk(q0) = − 1

2ee0(0)
Ik(q)m(p)π

m(p) − e0(p)

2e0(0)
Ik(q)m(p)E

m(a)n(b)ωn(ab)

(
�̃, Ṽ

)

+ e0(a)

e0(0)
ωk(aq)

(
�̃, Ṽ

)

that upon substitution of ωn(ab)(�̃, Ṽ ) and simple contractions gives

ωk(q0) = − 1

2ee0(0)
Ik(q)m(p)π

m(p) + D − 3

D − 2
ek(0)Ṽq + e0(p)

e0(0)
e

(n)
k �̃n(pq). (38)

Using (31) and (34), we can express Ṽq in terms of πk(0) (this is also linear in auxiliary
fields redefinition with [πk(0)] = [Ṽp] in all dimensions)

Ṽq = 1

2ee0(0)
ek(q)π

k(0). (39)

Finally, we obtain

ωk(q0) = − 1

2ee0(0)
Ik(q)m(p)π

m(p) + D − 3

D − 2
ek(0)

1

2ee0(0)
em(q)π

m(0) + e0(p)

e0(0)
e

(n)
k �̃n(pq), (40)

ωm(pq) = 1

D − 2

1

2ee0(0)

(
em(p)en(q) − em(q)en(p)

)
πn(0) + e(n)

m �̃n(pq). (41)

This is a linear transformation (in auxiliary fields) from the spatial components of the con-
nections ωm(αβ) to the new set of variables πm(ρ) and �̃n(pq).

Note that this field redefinition, (40)–(41), equally well can be performed at the La-
grangian level, in this case “momenta” πm(ρ) are just new auxiliary variables that play a
role of momenta conjugate to em(ρ) only after passing to the Hamiltonian formulation. In the
Lagrangian formalism, (40)–(41) are a definition of Darboux coordinates; and from now on
the auxiliary field πm(ρ) will be denoted as Fm(ρ).

We can combine (40) and (41) into one “semicovariant” expression

ωm(αβ) = Nm(αβ)0n(σ)F
n(σ) + ep(α)eq(β)e

(n)
m γ p(b)γ q(c)�̃n(bc) (42)

where

Nm(αβ)0n(σ) = 1

2ee0(0)

×
[(

δ̃q
α δ̃0

β − δ̃0
αδ̃

q

β

)(
−Im(q)n(p)δ̃

p
σ + D − 3

D − 2
em(0)en(q)δ̃

0
σ

)

+ δ̃p
α δ̃

q

β

1

D − 2

(
em(p)en(q) − em(q)en(p)

)
δ̃0
σ

]
. (43)

The advantage of going to Darboux variables

L
(
eμ(α),ωμ(αβ)

) → L
(
eμ(α),F

m(ρ),ω0(αβ), �̃n(pq)

)
(44)
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is based on the following properties

eBk(ρ)0(α)m(β)Nm(αβ)0n(σ) = δk
nδ̃

ρ
σ , Bk(ρ)0(α)m(β)ωm(αβ)

(
�̃

)
= 0 (45)

that for the “kinetic part” of the original Lagrangian (2) gives a simple expression that is
quadratic in fields

eBk(ρ)0(α)m(β)ek(ρ),0ωm(αβ) = Fk(ρ)ek(ρ),0. (46)

The possibility of eliminating the field �̃c(pq) at the Lagrangian level (Lagrangian reduc-
tion) depends on the presence of terms quadratic in this field. The “semicovariant” form (42)
makes the calculation quite simple as the only source of a term quadratic in �̃c(pq) that con-
tributes in (2) is the following (see (21))

−eAk(α)m(β)ωk(αγ )ωm
(γ

β). (47)

Substitution of ωm(αβ)(�̃) into (47) and contraction with Ak(α)m(β) gives

L
(
�̃�̃

)
= e�̃b(pn)�̃

p(nb) − e
e0(a)

e0(0)
�̃q

(ap)

e0(b)

e0
(0)

�̃p
(bq). (48)

Upon performing a variation with respect to �̃, an equation similar to (R102) follows,
which as we demonstrated in [2], can be solved; although the second term of (48) makes the
calculations quite long (note that in the Darboux coordinates (42) we have the equation (48)
as (R102) immediately, not after long preliminary calculations as in [2]). This suggests an
additional change of the Darboux coordinates separately for the part proportional to �̃b(pn);
and the first choice (as we have to keep the number of components the same) is the antisym-
metric traceless field �̂m

(pq), but with all indices being external and spatial. Such a field is
defined as

�̂m
(pq) = e(n)

m γ p(b)γ q(c)�̃n(bc), �̃k
(ab) = γ m(k)ep(a)eq(b)�̂m

(pq), (49)

which is an invertible redefinition of auxiliary fields.
This additional redefinition diagonalizes (48) and that can be checked by substitution of

(49) into (48), which leads to only one term that is quadratic in �̂m
(pq)

L
(
�̃�̃

)
�⇒ L

(
�̂�̂

)
= egqp�̂m

(kp)�̂k
(mq) (50)

(here gqp is a short-hand notation for eq(α)e
(α)
p , not an independent field).

This completes the derivation of the Darboux coordinates written down in the preceding
section in (14)

ωm(αβ) = Nm(αβ)0n(σ)F
n(σ) + ep(α)eq(β)�̂m

(pq) = ωm(αβ)(F ) + ωm(αβ)

(
�̂

)
. (51)

The second property of (45) is unaltered by the change of variables in (49) and

Bk(ρ)0(α)m(β)ωm(αβ)

(
�̂

)
= 0. (52)

Using transformation (51) we can now obtain the equivalent Lagrangian in terms of Dar-
boux coordinates, perform a Lagrangian reduction (i.e. eliminate �̂) and find the corre-
sponding Hamiltonian as it was schematically indicated in (13); or equally well, we can
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start the Hamiltonian formulation using the Lagrangian in Darboux coordinates and per-
form the Hamiltonian reduction. Of course, using either method, we obtain the same result
(4)–(5). But before we write the Lagrangian in Darboux coordinates and the corresponding
Hamiltonian we would like to make a few comments.

In their discussion of Darboux coordinates specialized to the D = 4 case, the authors of
[25] emphasize the non-linearity of their transformations. Non-linearity in [25] and in our
(14) appears with respect to only the non-second class fields (the tetrads of [25] or N-beins
in our case); and conversely, linearity in the second class fields (πk(ρ), λ̂km in [25] and Fn(σ),
�̂m

(pq) in our case) is the main feature of this transformation, making it invertible, which is a
necessary condition to establish equivalence of the original formulation with the formulation
in terms of Darboux coordinates.

In constructing of (43) we used the results of the Hamiltonian analysis that preserves
the D = 3 limit. A different, “more covariant”, combination can be constructed that also
diagonalizes the “kinetic” part of the Lagrangian (i.e. has the same properties as (43)); for
example

N ′
m(αβ)0n(σ) = 1

e

[
em(σ)An(α)0(β) − 1

D − 2

(
em(α)An(σ)0(β) − em(β)An(σ)0(α)

)]
(53)

where

An(α)0(β) = en(α)e0(β) − en(β)e0(α). (54)

Without any preliminary Hamiltonian analysis, and working only in a particular dimen-
sion (e.g. D = 4), such a diagonalization of the “kinetic” part looks even preferable as it has
a “more covariant” form that simplifies calculations and does not involve a division by e0(0)

as in (43). However, it does not have the correct D = 3 limit, which cannot be seen if one is
working only in a particular dimension, e.g. when D = 4 (see point (C) in the Introduction).
Using the Darboux coordinates (51) with N ′

m(αβ)0n(σ), instead of Nm(αβ)0n(σ), leads to prob-
lems in the Hamiltonian analysis. The reason for this is that the transformation found using
the Hamiltonian analysis, (43), preserves properties of the primary variables, i.e.

δωm(αβ)

δe0(ρ)
= 0,

for the Darboux coordinates with Nm(αβ)0n(σ), as

δ

δe0(ρ)

(
Nm(αβ)0n(σ)F

n(σ) + ep(α)eq(β)�̂m
(pq)

)
= 0, (55)

in contrast to the “more covariant” combination N ′
m(αβ)0n(σ) for which

δ

δe0(ρ)

N ′
m(αβ)0n(σ) �= 0. (56)

This might lead to change of the algebra of constraints, gauge invariance, etc.6

This is an illustration of how the properties of a singular system can be drastically
changed even at the Lagrangian level if one assumes that it is always permissible to use
some operations (e.g. any invertible transformation) known for non-singular Lagrangians

6This example illustrates why problems might arise in the Faddeev-Jackiw method [36]. The symplectic form
in [36] was found by diagonalizing the “kinetic” part of the Lagrangian; but, as we show, this is not enough in
general to preserve equivalence. And this is the reason for the “non-equivalence” of the Dirac and symplectic
methods found for some models.
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without careful analysis and without taking into account the specifics of singular systems
(see the general discussion in [41]). In constructing the Darboux coordinates we rely on the
Hamiltonian analysis and follow Dirac’s general statement [4]: “I [Dirac] feel that there will
always be something missing from them [non-Hamiltonian methods] which we can only get
by working from a Hamiltonian”. However, the criteria of equivalence based on the Noether
second theorem for singular systems can be formulated at the pure Lagrangian level; the
results will be reported elsewhere [42].

4 Lagrangian and Hamiltonian Reductions of the EC Theory in Darboux
Coordinates

Substitution of the Darboux coordinates (51) into the original EC Lagrangian LEC (2) is a
simple task, as we have only one expression for all spatial connections (51) which are the
only fields that are affected by a change of variables. This gives us a different, but equivalent
first order formulation of the EC theory LEC(D)

LEC

(
eμ(α),ωμ(αβ)

) �⇒
LEC(D)

(
eμ(α),ω0(αβ),F

k(ρ), �̂m
(pq)

)

= ek(ρ),0F
k(ρ) +

(
eBk(ρ)m(α)0(β)ek(ρ),m − 2eA0(α)k(γ )ωk

(β
γ )

(
F, �̂

))
ω0(αβ)

− e0(ρ),kF
k(ρ) + eBn(ρ)k(α)m(β)en(ρ),kωm(αβ)

(
F, �̂

)

− eAk(α)m(β)ωk(αγ )

(
F, �̂

)
ωm

(γ
β)

(
F, �̂

)
. (57)

The appearance of two terms that are quadratic in the fields (first terms in the second and
third lines of (57)) is the consequence of (46). Further, separating the spatial connections
into two parts (see (40), (41)) and performing some contractions we obtain

LEC(D) = ek(ρ),0F
k(ρ) +

(
1

2
Fk(α)e

(β)

k − 1

2
Fk(β)e

(α)
k + eBk(ρ)m(α)0(β)ek(ρ),m

)
ω0(αβ)

− e0(ρ),kF
k(ρ) + eBn(ρ)k(α)m(β)en(ρ),kωm(αβ)(F ) − eAk(α)m(β)ωk(αγ )(F )ωm

(γ
β)(F )

+ egqp�̂m
(kp)�̂k

(mq) + 2eek(β)
(
em(β),q + e(γ )

q ωm(γβ)(F )
)
�̂k

(mq), (58)

where gqp is, as before, a short-hand notation for eq(ρ)e
(ρ)
p , not an independent field. Note

that in the terms proportional to ω0(αβ), there are no contributions involving �̂k
(mq) as

A0(α)k(γ )ωk
(β

γ )(�̂) = 0; and contributions with Fk(α), instead of direct substitution, can be
obtained by contracting Bk(ρ)m(α)0(β) with e

(β)

k and performing an antisymmetrization that
gives eA0(α)k(γ )ω

(β

k γ )(F ). The last line of (58) is the result of a contraction with the explicit

form of ωk(αγ )(�̂) (see (51)).
Equation (58) is the algebraic expression with respect to the field �̂k

(mq) which can be
eliminated by using its equation of motion due to the presence of a term in the Lagrangian
quadratic in this field (Lagrangian reduction). After elimination of this field we can ob-
tain the Lagrangian (see (11)) with Fk(ρ) playing the role of momenta conjugate to ek(ρ)

in the Hamiltonian formulation, and without the need to solve the secondary second class
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constraints. Thus, using the Darboux coordinates we can obtain (4)–(5), which is the same
Hamiltonian derived in [2], but without having to do any long calculation. Equivalence of the
Lagrangian and Hamiltonian methods allows us to interchange the order of operations, and
using (58) (without the Lagrangian reduction) we can immediately write the Hamiltonian
and then perform the Hamiltonian reduction. This approach is employed in the present pa-
per, giving us the possibility to compare the results obtained here with the direct calculations
of [2].

The Hamiltonian of the first order EC action written in Darboux coordinates can be just
read off from the corresponding Lagrangian (58), as it is possible for any first order action.
The advantage of Darboux coordinates is that the primary constraints are very simple and the
second class variables Fk(α) and �̂k

(mq) can be easily separated and eliminated by solving
the second class constraints (Hamiltonian reduction).

Note that we can use the Lagrangian (58) and eliminate field �̂k
(mq) without any ref-

erence to the Hamiltonian and only after that go to the Hamiltonian, which can be read off
from such a reduced Lagrangian. Equally well, we can perform reduction at the Hamiltonian
level starting from the Lagrangian (58). We use the second approach to compare, or rather
illustrate, simplifications that occur after using the Darboux coordinates with the direct cal-
culations in [2]. In addition, such an approach allows us to discuss some subtle points.

The total Hamiltonian (introducing momenta conjugate to all fields in the Lagrangian
(58)) is

HT

(
eμ(ρ), π

μ(ρ),ω0(αβ),
0(αβ),F k(α),k(α), �̂k

(mq), ̂k
(mq)

)

= πμ(ρ)ėμ(ρ) + 0(αβ)ω̇0(αβ) + k(α)Ḟ
k(α) + ̂k

(mq)�̂k,0
(mq) − L, (59)

where πμ(ρ), 0(αβ), k(α) and ̂k
(mq) are momenta conjugate to eμ(ρ), ω0(αβ), Fk(α) and

�̂k
(mq), respectively. One can ask what are the relationships between the momenta k(α),

̂k
(mq) introduced here and the momenta k(αβ) conjugate to the spatial connection ωk(αβ)

in the direct approach [2]? Please note that this question can be completely avoided if we
perform the Lagrangian reduction. Is a change of variables ωk(αβ), k(αβ) −→ Fk(α), k(α),
�̂k

(mq), ̂k
(mq) canonical? Is it necessary for this change to be canonical? In the papers that

discuss canonical transformations for constraint systems there are statements that variables
corresponding to the second class constraints (and so can be eliminated) do not need to
satisfy conditions of canonicity and only variables that cannot be eliminated must do (e.g.
that correspond to primary constraints). These results probably explain why in some articles
on the symplectic approach the variables that are included in the “kinetic” part of the La-
grangian are called “canonical” and those that can be eliminated are called “non-canonical”.
However, this question seems to us deserves additional investigation because in the Hamil-
tonian formulation of the first order, affine-metric, gravity [10] we were able to perform
such a separation of variables preserving canonicity including variables that correspond to
the second class constraints. Is it possible to do the same for the EC action? Can this affect
the result? We are planning to address these issues in the near future.

Returning to (58) and separating terms with “velocities” in the Lagrangian, we write

−L = −ek(ρ),0F
k(ρ) + Hc

and then singling out terms proportional to ω0(αβ) we obtain

Hc = −ω0(αβ)χ
0(αβ) + H ′

c (60)
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where

χ0(αβ) = 1

2
Fk(α)e

(β)

k − 1

2
Fk(β)e

(α)
k + eBk(ρ)m(α)0(β)ek(ρ),m (61)

and

H ′
c = e0(ρ),kF

k(ρ) − eBn(ρ)k(α)m(β)en(ρ),kωm(αβ)(F ) + eAk(α)m(β)ωk(αγ )(F )ωm
(γ

β)(F )

− egqp�̂k
(mq)�̂m

(kp) − 2eek(β)
(
em(β),q + e(γ )

q ωm(γβ)(F )
)
�̂k

(mq). (62)

The non-zero fundamental PBs are

{
eν(σ), π

μ(ρ)
} = δμ

ν δ̃ρ
σ ,

{
ω0(αβ),

0(ρσ)
} = �̃

(ρσ)

(αβ) ,
{
Fk(α),m(β)

} = δk
mδ̃α

β , (63)

{
�̂k

(mq), ̂x
(yz)

}
= Î

x(mq)

k(yz) = δx
k �̂

(mq)

(yz) − 1

D − 2

(
δx
y �̂

(mq)

(kz) − δx
z �̂

(mq)

(ky)

)
(64)

where

�̃
(ρσ)

(αβ) ≡ 1

2

(
δ̃ρ
α δ̃σ

β − δ̃
ρ

β δ̃σ
α

)
, �̂

(mq)

(yz) ≡ 1

2

(
δm
y δq

z − δm
z δq

y

)
. (65)

As in any first order formulation, the number of primary constraints is equal to the num-
ber of independent variables. One pair of primary constraints

φk(ρ) = πk(ρ) − Fk(ρ) ≈ 0, m(γ ) ≈ 0 (66)

is second class. These are constraints of a special form [33], and one pair of phase-space
variables can be eliminated without affecting the PBs of the remaining variables by substi-
tution of the solution into the total Hamiltonian

Fk(ρ) = πk(ρ), m(γ ) = 0. (67)

This is the first step of Hamiltonian reduction and illustrates the classification of variables
(suggested in the previous section) on primary and second class: Fk(ρ) is a second class
variable. After this reduction the total Hamiltonian is

HT = π0(ρ)ė0(ρ) + 0(αβ)ω̇0(αβ) + �̂k,0
(mq)̂k

(mq) − ω0(αβ)χ
0(αβ) (F = π)

+ H ′
c (F = π) . (68)

According to the Dirac procedure, the next step is to consider the time development of the
primary constraints (0(αβ), π0(ρ), ̂k

(mq)). After the first reduction, all primary constraints
obviously have zero PBs among themselves (they are momenta of canonical variables), i.e.
there are no second class pairs among the primary constraints, and all of them lead to the
corresponding secondary constraints, e.g.

̇0(αβ) = {
0(αβ),HT

} = {
0(αβ),Hc

} = {
0(αβ),−ω0(αβ)χ

0(αβ)
} = χ0(αβ). (69)

The secondary rotational constraint χ0(αβ) has zero PBs with all primary constraints

{
χ0(αβ),0(νμ)

} = {
χ0(αβ), π0(σ )

} =
{
χ0(αβ), ̂k

(mq)

}
= 0. (70)
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The first and the last PBs are manifestly zero and the second is zero as a consequence of the
properties of Bλ(γ )μ(α)ν(β) and antisymmetry of Cτ(σ)λ(γ )μ(α)ν(β) (see (A.3) of Appendix A)

δ

δe0(σ )

(
eBk(ρ)m(α)0(β)ek(ρ),m

) = eC0(σ )k(ρ)m(α)0(β)ek(ρ),m = 0. (71)

The PB among two rotational constraints corresponds to Lorentz algebra (6); this has already
been demonstrated in [1, 2] for all dimensions.

Because {π0(ρ), χ0(αβ)} = 0 and since the PBs among all the primary constraints (69) all
vanish, the time development of π0(σ ) leads to the secondary translational constraint

π̇0(σ ) = {
π0(σ ),HT

} = {
π0(σ ),Hc

} = {
π0(σ ),H ′

c

} = − δH ′
c

δe0(σ )

= χ0(σ ), (72)

which has the following explicit form

χ0(σ ) = π
k(σ)
,k + eC0(σ )n(ρ)k(α)m(β)en(ρ),kωm(αβ) (π) − eB0(σ )k(α)m(β)ωk(αγ ) (π)ωm

(γ
β)(π)

+ ee0(σ )gqp�̂k
(mq)�̂m

(kp) + 2eA0(σ )k(β)
(
em(β),q + e(γ )

q ωm(γβ) (π)
)
�̂k

(mq). (73)

When performing the variation in (72) we used
δωk(γβ)(π)

δe0(σ )
= 0 (this is easy to show using

ωk(γβ)(π) from (51) and the fact that δ
δe0(σ )

( 1
ee0(0) ) = 0 and

δek(μ)

δe0(σ )
= 0). In all terms in H ′

c ,
only ABC density functions are affected and their variations are simple (see Appendix A).

Contracting (73) with e0(σ ) and using the ABC properties (expand A and B in σ and
contract with e0(σ ) (see (A.12) of Appendix A)), we can express H ′

c as

H ′
c = −e0(σ )χ

0(σ ) + (
e0(ρ)π

k(ρ)
)
,k

. (74)

Based on the properties of the ABC functions, we immediately obtain the result that
the PB of χ0(σ ) with the primary translational constraint, π0(μ), is zero (i.e. after second
variation with respect to e0(μ) we will have A,B,C and D with two equal indices (00)

which are zero because of antisymmetry of these density functions; see Appendix A):
{
χ0(σ ), π0(μ)

} = 0, (75)

and also {
χ0(σ ),0(αβ)

} = 0. (76)

The PB of χ0(σ ) with the primary constraint ̂k
(mq) is not zero, but the time development

of ̂k
(mq) leads to the secondary constraint

̂k
(mq),0 =

{
̂k

(mq),H
′
c

}
= − δH ′

c

δ�̂k
(mq)

= χ̂ k
(mq) (77)

where

χ̂ k
(mq) = e�̂m

(kp)gpq − e�̂q
(kp)gpm + eD̂k

(mq) (78)

with D̂k
(mq) being the manifestly antisymmetric and traceless combination (see Appendix B)

D̂k
(mq) = D̂k

mq − D̂k
qm − 1

D − 2

[
δk
m

(
D̂n

nq − D̂n
qn

)
− δk

q

(
D̂n

nm − D̂n
mn

)]
(79)
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built from the coefficient which appears in front of terms in (62) that are linear in �̂k
(mq)

D̂k
mq = ek(β)em(β),q + ek(β)e(γ )

q ωm(γβ)(π). (80)

Note that D̂k
mq is not antisymmetric or traceless by itself; and (78)–(79) are the result of

performing a variation using the fundamental PB of (64).
The pair of constraints (̂k

(mq), χ̂
x
(yz)) is second class because

{
̂k

(mq), χ̂
x
(yz)

}
= N̂kx

(mq)(yz), (81)

where

N̂kx
(mq)(yz) = − e

2

[
δk
y

(
gzmδx

q − gzqδ
x
m

) − δk
z

(
gymδx

q − gyqδ
x
m

)

− 1

D − 2

[
δx
y

(
gzmδk

q − gzqδ
k
m

) − δx
z

(
gymδk

q − gyqδ
k
m

)]]
, (82)

which is manifestly antisymmetric in (mq) and (yz), traceless in km and kq , in xy and xz,
non-zero and not proportional to constraints. (Here gzm again denotes ez(α)e

(α)
m .) The most

important property of N̂kx
(mq)(yz) is its invertability and the explicit form of its inverse is given

below. The pair of variables (̂k
(mq), �̂k

(mq)) can be eliminated by substitution into the total
Hamiltonian

̂k
(mq) = 0, �̂z

(mk) = 1

2

(
γ knD̂m

(nz) − γ mnD̂k
(nz) − γ kyγ mwgzxD̂

x
(wy)

)
, (83)

where �̂z
(mk) is the solution of the constraint (78) χ̂ k

(mq) = 0 (see Appendix B). This again
illustrates our classification: �̂k

(mq) is a second class variable as is Fk(ρ). In (83) we use
a short-hand notation which was originally introduced by Dirac [43] for the Hamiltonian

formulation of the Einstein-Hilbert action: γ kn ≡ gkn − g0kg0n

g00 where gμν = eμ(α)eν
(α).

The elimination of the phase-space pair (Fk(ρ), k(ρ)) by solving the corresponding sec-
ond class constraint was simple as they are of a special form and it is known that in such a
case the Dirac brackets (DBs) of the remaining fields coincide with their original PBs [33].
The pair of second class constraints (̂k

(mq), χ̂ x
(yz)) is more complicated and the effect of

their elimination on the PBs among the remaining canonical variables has to be checked.
In [2] the elimination of ωk(αβ) was performed using a different and complicated approach
because of the mixture of different components (ωk(pq) and ωk(p0)) in the equations; and it
was even not clear how DBs can be calculated. After introducing Darboux coordinates and
decoupling the two fields, Fk(ρ) and �̂k

(mq), this becomes possible. Let us investigate the
effect of their elimination on the DBs of the remaining fields.

The Dirac bracket is defined for any pair of functions of canonical variables as [4]

{�,�}DB = {�,�}PB −
({

�,̂k
(mq)

}
PB

{
�, χ̂k

(mq)

}
PB

)
M−1

( {̂a
(bc),�}PB

{χ̂ a
(bc),�}PB

)
.

(84)
(Here we used our set of second class constraints.) M−1 is the inverse of the matrix M built
from the PBs of the second class constraints

M =
[ {̂k

(mq), ̂
a
(bc)} {̂k

(mq), χ̂
a
(bc)}

{χ̂ k
(mq), ̂

a
(bc)} {χ̂ k

(mq), χ̂
a
(bc)}

]
=

[
0 N̂ka

(mq)(bc)

−N̂ak
(bc)(mq) X̂ka

(mq)(bc)

]
. (85)
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Note that N̂ka
(mq)(bc) = N̂ak

(bc)(mq) (see (82)).
We want to investigate the effect of eliminating the second class constraints on the prop-

erties of the remaining canonical variables and on the PBs among the functions constructed
from them. N̂ka

(mq)(bc) is given by (82), and the explicit form of X̂ka
(mq)(bc) can be calculated,

but the inverse of M can be defined for any X̂. The explicit form of X̂ is needed only for
calculation of DB among two translational constraints; but we do not discuss this in this arti-
cle. The inverse of such a matrix can be immediately found if the inverse of the off-diagonal
blocks is known

N̂ka
(mq)(bc)

(
N̂−1

)(bc)(yz)

ax
= Î

k(yz)

x(mq) (86)

where Î
k(yz)

x(mq) is the fundamental PB for antisymmetric and traceless canonical pair defined

in (64). The inverse (N̂−1)
(bc)(yz)
ax is

(
N̂−1

)(bc)(yz)

ax
= 1

4e

[
gax

(
γ byγ cz − γ bzγ cy

) + δb
x

(
γ czδy

a − γ cyδz
a

) − δc
x

(
γ bzδy

a − γ byδz
a

)

− 2

D − 2

[
δb
a

(
γ czδy

x − γ cyδz
x

) − δc
a

(
γ bzδy

x − γ byδz
x

)]]
. (87)

(N̂−1)
(bc)(yz)
ax is also manifestly antisymmetric in (bc) and (yz), as well it is traceless in ba

and ca, in yx and xz. The following properties are useful

Î · Î = Î , Î · N̂ = N̂, Î · N̂−1 = N̂−1. (88)

Equation (86) and properties (88) allow us to find M−1

M−1 =
[

N̂−1X̂N̂−1 −N̂−1

N̂−1 0

]
, M · M−1 =

[
Î 0
0 Î

]
. (89)

The canonical variables which remain after elimination of the pair (̂z
(mk), �̂z

(mk)) have
fundamental PBs that are not affected, as can be easily checked. Substitution of the solution
of the secondary constraints (83) into (68) (Hamiltonian reduction) leads to

HT = π0(ρ)ė0(ρ) + 0(αβ)ω̇0(αβ) − ω0(αβ)χ
0(αβ)

− e0(σ )χ
0(σ )

(
�̂z

(mk) from (83)
)

. (90)

After substitution of �̂z
(mk), this leads to the same result as obtained in [2]. One can see that

the Darboux coordinates significantly simplify the calculations.
The main goal of this paper is the construction of Darboux coordinates for the EC action

in a form independent of a particular dimension. The direct approach used in [2] made fur-
ther calculations almost unmanageable; and the simplification due to Darboux coordinates
that shortens the calculations of (90), gives us a hope of completing the Dirac procedure. We
wish to demonstrate its closure, the absence of tertiary constraints, and restore gauge invari-
ance. This result will be reported elsewhere. Here we just demonstrate that with Darboux
coordinates these calculations are drastically simplified; and as an example, we consider
the PB between rotational and translational constraints. We argued in [2] that the known
invariance of the EC action under Lorentz rotation, Dirac’s conjecture [4] and the Castellani
algorithm [14] lead to the necessity of having the PB among rotational and translational



2880 Int J Theor Phys (2010) 49: 2859–2890

constraints be exactly the same in all dimensions given by the corresponding part of the
Poincaré algebra (9).

Let us demonstrate that indeed in all dimensions (D > 2) the PB among translational
and rotational constraints is the same and corresponds to the Poincaré algebra (9). This
part of algebra among the secondary constraints {χ0(σ ), χ0(μν)}, as well as {χ0(σ ), χ0(ρ)},
can be calculated using DBs, i.e. avoiding substitution of �̂ into the translational constraint
before calculating the PB (which is the longest part of such calculations) and performing
this substitution only after

{
χ0(σ ), χ0(μν)

}
DB

= {
χ0(σ ), χ0(μν)

}

−
({

χ0(σ ), ̂k
(mq)

} {
χ0(σ ), χ̂ k

(mq)

})
M−1

(
{̂a

(bc), χ
0(μν)}

{χ̂ a
(bc), χ

0(μν)}

)
,

(91)

where �̂ and ̂ are the fundamental variables and the only non-zero PBs are given in (63)–
(64). (Note that only the first step of reduction is performed in (67).) After calculating (91)
the solution of �̂ is substituted that gives us the final answer for {χ0(σ ), χ0(μν)}. The advan-
tage of this calculation lies in the possibility to demonstrate (and also single out) contribu-
tions in the first term of (91) that give the corresponding part of the Poincaré algebra almost
manifestly and in compact form. First of all, we outline the idea of such calculations. It is
not difficult to demonstrate that the calculation of the first PB in (91) gives

{
χ0(σ ), χ0(μν)

} = 1

2
η̃σμχ0(ν)

(
π, e, �̂

)
− 1

2
η̃σνχ0(μ)

(
π, e, �̂

)
+ Rσ(μν)

(
�̂,π, e

)
. (92)

So, the substitution of the solution of �̂ will not affect the first two terms in (92). What is
left is to demonstrate that the remainder Rσ(μν), along with the second contribution in (91),
after substitution of �̂ gives zero which is a long but straightforward calculation. It is easier
to prove that Rσ(μν) is zero if we consider separately the terms of different “nature”; for
example, all terms which are linear in momenta should cancel independently of the rest of
contributions. This allows us to break these long and cumbersome calculations into smaller
and independent pieces.

Let us outline the proof of (92). We start the calculations by separating the contributions
of different order in �̂ in the translational constraint (73)

χ0(σ ) = χ0(σ )
(
�̂2

)
+ χ0(σ )

(
�̂1

)
+ χ0(σ )

(
�̂0

)
. (93)

For the contribution quadratic in �̂, we almost immediately obtain the exact expression
(there are no contributions into the remainder in this order, Rσ(μν)(�̂2) = 0)

{
χ0(σ )

(
�̂2

)
, χ0(μν)

}
= 1

2
η̃σμχ0(ν)

(
�̂2

)
− 1

2
η̃σνχ0(μ)

(
�̂2

)
. (94)

The next contribution, linear in �̂, is
{
χ0(σ )

(
�̂

)
, χ0(μν)

}

= (
em(ρ),q + e(γ )

q ωm(γρ) (π)
)
�̂k

(mq)

{
2eA0(σ )k(ρ),

1

2
πn(μ)e(ν)

n − 1

2
πn(ν)e(μ)

n

}
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+ 2eA0(σ )k(ρ)�̂k
(mq)

{(
em(ρ),q + e(γ )

q ωm(γρ) (π)
)
,

1

2
πn(μ)e(ν)

n − 1

2
πn(ν)e(μ)

n + eBn(ρ)m(μ)0(ν)en(ρ),m

}
. (95)

Considering the PB in the first term of (95) and using (A.2) (see Appendix A), we obtain

{
2eA0(σ )k(ρ),

1

2
πn(μ)e(ν)

n − 1

2
πn(ν)e(μ)

n

}
= eBn(μ)0(σ )k(ρ)e(ν)

n − (μ ↔ ν) . (96)

Expanding B in n (see (A.6) of Appendix A) and contracting it with e(ν)
n we have

eBn(μ)0(σ )k(ρ)e(ν)
n = e

(
η̃μν − e0(μ)e

(ν)

0

)
A0(σ )k(ρ) + e

(
η̃σν − e0(σ )e

(ν)

0

)
A0(ρ)k(μ)

+ e
(
η̃ρν − e0(ρ)e

(ν)

0

)
A0(μ)k(σ ). (97)

Three terms in (97) proportional to e
(ν)

0 give us

−ee
(ν)

0

(
e0(μ)A0(σ )k(ρ) + e0(σ )A0(ρ)k(μ) + e0(ρ)A0(μ)k(σ )

)
.

The expression in the brackets exactly coincides with expansion of B0(μ)0(σ )k(ρ) (see (A.6)
of Appendix A), which automatically equals zero because of antisymmetry of B in external
indices (for details see Appendix A). After antisymmetrization of the remaining terms of
(96) we have

{
2eA0(σ )k(ρ),

1

2
πn(μ)e(ν)

n − 1

2
πn(ν)e(μ)

n

}

= −eη̃νσ A0(ρ)k(μ) − eη̃νρA0(μ)k(σ ) + eη̃μσ A0(ρ)k(ν) + eη̃μρA0(ν)k(σ ). (98)

The first and third terms of the second line of (98), contracted with the expression in front
of the PB in (95), gives exactly two rotational constraints; and the rest of terms, along with
the second term in (95), contribute to the remainder. Finally,

{
χ0(σ )

(
�̂1

)
, χ0(μν)

}
= 1

2
η̃σμχ0(ν)

(
�̂1

)
− 1

2
η̃σνχ0(μ)

(
�̂1

)
+ Rσ(μν)

(
�̂1

)
. (99)

Similarly one can demonstrate (using properties of A,B,C functions) that in the last
order (zero order in �̂) the same result as (99) follows (with the additional contributions
into the remainder Rσ(μν)(�̂0)) leading to (92). This part of the calculation is simple and it
is needed to complete the proof of (92). For the rest of calculations, the remainder has to be
considered together with the second term of (91), and the solution of �̂ has to be substituted
at the end of the calculations.

From the field content of χ0(μν) (independence from ̂a
(bc)) it follows that {̂a

(bc),

χ0(μν)} = 0. Using this PB and the explicit form of M−1 we obtain

({
χ0(σ ), ̂k

(mq)

} {
χ0(σ ), χ̂ k

(mq)

})
M−1

( {̂a
(bc), χ

0(μν)}
{χ̂ a

(bc), χ
0(μν)}

)

=
{
χ0(σ ), ̂k

(mq)

}(
−N̂−1

)(mq)(bc)

ka

{
χ̂ a

(bc), χ
0(μν)

}
. (100)
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When calculating (100), it is better to extract terms proportional to χ̂ a
(bc), which after

substitution of �̂ vanish and we are left with the simple expressions

{
χ0(σ ), ̂k

(mq)

}
= −2een(σ)e0(β)

(
ep(β),d + e

(γ )

d ωp(γβ) (π)
){

�̂n
(pd), ̂k

(mq)

}
(101)

and {
χ̂ a

(bc), χ
0(μν)

} = −e
{
D̂a

(bc), χ
0(μν)

}
. (102)

Using (101), (102) together with (91), (88), and the antisymmetry and tracelessness of
(87) and (79), we obtain

{
χ0(σ ), χ0(μν)

} = 1

2
η̃σμχ0(ν) − 1

2
η̃σνχ0(μ) + Rσ(μν)

+ 4een(σ)e0(β)
(
ep(β),b + e

(γ )

b ωp(γβ) (π)
)(

N̂−1
)(pd)(bc)

na

× e
{
ea(α)eb(α),c + ea(α)e(ρ)

c ωb(ρα) (π) ,χ0(μν)
}
. (103)

The most laborious part of the calculation is a demonstration that the remainder, together
with the last line of (103), equals zero. We perform these calculations by separating terms
of different order in πn(μ), which makes the analysis more manageable.

Using Darboux coordinates allows us to prove that the PB among rotational and transla-
tional constraints also supports the Poincaré algebra in all dimensions, D > 2. Knowledge
of this PB, along with (6), is sufficient to restore rotational invariance in the Hamiltonian
formulation of the Einstein-Cartan action by using the Castellani procedure. This result, as
well as calculation of the PB between two translational constraints and the restoration of
translational invariance, will be reported elsewhere.

5 Discussion

Based on the results of direct application of the Dirac procedure to the first order Einstein-
Cartan action [2], we have constructed the uniform Darboux coordinates valid in all dimen-
sions for which the first order formulation exists; i.e. when it is equivalent to the second
order EC action (D > 2). In particular, these uniform Darboux coordinates guarantee equiv-
alence and allow one to check the D = 3 limit [1] at all stages of calculation in dimensions
D > 3. Considerable simplification occurs when we use Darboux coordinates and it is ex-
plicitly demonstrated by obtaining the Hamiltonian formulation in a few lines compared
with the direct and cumbersome calculations [2] considered previously. However, we have
to emphasize that the preliminary Hamiltonian analysis is indispensable for the construction
of Darboux coordinates, which preserve equivalence with the original action. An arbitrary
change of variables at the Lagrangian level for singular Lagrangians is an ambiguous opera-
tion because it might correspond to a non-canonical change of variables at the Hamiltonian
level. For singular Lagrangians the invertability of transformations (redefinition of fields)
from one set of variables to another is not a sufficient condition to preserve equivalence [41];
and one particular example is considered in the end of Sect. 3 (see (53)). These “Darboux
coordinates”, (53), despite separating variables in the same way, do not preserve the D = 3
limit, lead to results which are different from those found by the direct analysis and destroy
equivalence. Our Darboux transformations, (43), do not suffer such an ambiguity because
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they are based on the preliminary Hamiltonian analysis. In other words, our transforma-
tion separates variables in the same way that the Hamiltonian reduction does. This makes
this transformation unique and preserves equivalence with the original action, as well as the
equivalence of results for the Lagrangian and Hamiltonian formulations.

To answer the question about possible modifications of the Poincaré algebra of PBs
among the secondary constraints of the EC Hamiltonian in dimensions D > 3, we need
to complete calculations of PBs. In particular, if {χ0(σ ), χ0(μν)} = 1

2 η̃σμχ0(ν) − 1
2 η̃σνχ0(μ)

(and there is a strong indication that this is the case) and {χ0(α), χ0(β)} = 0, then the N-bein
gravity is the Poincaré gauge theory in all dimensions and the D = 3 case is not special at
all. Note (we discussed this in [2]) that in higher dimensions, the constraints are much more
complicated and having the same algebra does not mean that the gauge transformations must
be exactly the same as for D = 3. If {χ0(α), χ0(β)} �= 0, but proportional to secondary first
class constraints, we still have closure of the Dirac procedure, all constraints are first class,
and the gauge generators can be found and the gauge transformations can be restored. In this
case, N-bein gravity for D > 3 is the gauge theory, but with the modified Poincaré algebra.
For example, if (the most general case)

{
χ0(α), χ0(β)

} = F̃
(αβ)

(μν) χ
0(μν) + M̃(αβ)

ν χ0(ν) (104)

with structure functions F̃
(αβ)

(μν) and M̃(αβ)
ν , which are F̃

(αβ)

(μν) = 0 and M̃(αβ)
ν = 0 when D = 3,

then one can say that in all dimensions the EC theory is a gauge theory with a general-
ized Poincaré algebra among secondary first class constraints that degenerates into the true
Poincaré algebra when D = 3. A similar result as (104) has been known for a long time
and was presented in [11, 12, 18]; but it was not obtained using the Hamiltonian procedure
and it was written for generators, not for the PBs of constraints. The complete Hamiltonian
analysis will show whether the algebra among constraints is Poincaré or modified Poincaré.
One can expect some similarities of (104) with the results of the Lagrangian approach. The
commutator of two translations is proportional to rotation and translation [3]

(δt ′′δt ′ − δt ′δt ′′) eν(β) = δr̃eν(β) + δt̃ eν(β) (105)

with the parameters

r̃(αβ) ≡ eλ(ρ)eτ(γ )Rλτ(αβ)t
′
(ρ)t

′′
(γ ) (106)

and

t̃(σ ) ≡ eλ(ρ)eτ(γ )Tλτ(σ )t
′
(ρ)t

′′
(γ ). (107)

(The same relations (105)–(107) hold for (δt ′′δt ′ − δt ′δt ′′)ων(αβ).) Some relationship among
the structure functions in (104) and (105)–(107) should be expected.

Of course, the structure functions F̃
(αβ)

(μν) and M̃(αβ)
ν in the Hamiltonian approach will be

complicated as part of the variables were eliminated in the course of reduction (solving sec-
ond class constraints) and the rest of variables and momenta are not present in a manifestly
covariant form.

The exact form of the algebra of secondary constraints is important; but we already have
enough evidence to make a conclusion about the gauge invariance of the EC action. It is
certain that gauge invariance is the translation and Lorentz rotation in the internal space
and that diffeomorphism (either spatial or full) is not a gauge invariance of N-bein gravity
generated by its first class constraints. This conclusion is based on the following arguments.

The parameters characterizing the gauge transformations are defined by the tensorial
character of primary first class constraints. Both of them, 0(αβ) and π0(σ ), have internal
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indices, so do the corresponding gauge parameters r(αβ) and t(σ ) (see Sect. V of [10] for
more details). This gauge symmetry corresponds to rotation and translation in the tangent
space. The gauge parameter of diffeomorphism, ξμ, has an external index, which can be
accommodated only if the corresponding primary first class constraint also has an external
free index. This does not happen in the case of N-bein gravity if the Dirac procedure is
performed correctly and a non-canonical change of variables is avoided (see [10]). Formula-
tions that claim to have the “spatial diffeomorphism constraint” or any further consideration
based on such a constraint [8, 9] for tetrad gravity is the product of non-canonical change
of variables, which has the same origin as in metric gravity.7 Gauge invariance is a unique
characteristic of a singular system and follows from its unique constraint structure, i.e. it
is derivable from the first class constraints in accordance with Dirac’s conjecture [4] and
using the Castellani algorithm [14] (the only algorithm to restore gauge invariance which
is not sensitive to a choice of combinations of non-primary constraints [10]). Gauge invari-
ance is unique, but it does not presume the absence of additional symmetries in the action.
In [13] such symmetries, which are not derivable from constraints, are called “trivial”8 but
this name seems to us to be a little bit confusing as e.g. the non-gauge symmetry of the EC
action, diffeomorphism, can hardly be called “trivial”. It is more preferable, without intro-
ducing any new terminology, to just have “symmetries of the action” (there could be many)
and “a gauge symmetry” (a unique one) that follows from the Hamiltonian analysis or from
basic differential identities at the Lagrangian level [3].

The Hamiltonian analysis allows us to single out “what is a gauge symmetry and what is
not” [15]. In [3] we showed, using differential identities, that the translation in the internal
space is an invariance of the EC action. This fact has long been known; such transforma-
tions were written in [12, 18], and are exactly the same as we obtained in [3]. This makes
the common statement that “translation is not invariance” absolutely groundless and some-
what mysterious. In [3] we also argue that two invariances, translation in the internal space
and diffeomorphism, cannot be simultaneously present as gauge invariances in Hamiltonian
formulations as the number of first class constraints needed to generate both of them would
lead to a negative number of degrees of freedom (for relation between the number of con-
straints and degrees of freedom see [21]). The only possible way to reconcile these two
symmetries, as we stated in [3], is that there exists a canonical transformation that converts
our constraints (90) into a different set of constraints which support diffeomorphism. In this
article we argue that this is impossible and such a canonical transformation does not exist.
Let us look at this from the Hamiltonian and Lagrangian points of view.

From the Hamiltonian point of view, the known canonical transformations for the first
and second order Einstein-Hilbert actions [10, 44, 45] always preserve the form-invariance
of the constraint algebra that would be destroyed by any transformation that changes the
tensorial character of the primary constraints needed to have diffeomorphism as a gauge
invariance of the EC action (as the gauge parameter of diffeomorphism ξμ is a true vector;
for more details see [10]). In addition, in formulations which are related by a canonical

7The loss of full diffeomorphism invariance due to a non-canonical change of variables in metric gravity
was discussed in [16, 17, 44]. A lapse with canonicity leads to big (or rather a devastating) shift from co-
variant General Relativity (Einstein-Hilbert and Einstein-Cartan actions) to some non-covariant models like
“geometrodynamics” for metric gravity and inspired by it non-covariant models for tetrads (see Sect. V of
[10] for discussion on this topic). This, of course, propagates into further analysis (i.e. quantization) of these
models.
8In Sect. 3.1.5. of [13] “trivial gauge transformations” are defined and all transformations are classified
by using the Hamiltonian method; in addition, it is stated that these “transformations are of no physical
significance because in the Hamiltonian formalism they are not generated by a constraint”.
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transformation, constraints are different, but the gauge transformations are the same and
for new and old fields and they can be obtained one from another without any need for a
field dependent redefinition of gauge parameters (such a field dependent redefinition is an
indication of having a non-canonical change of variables). The gauge parameters which are
responsible for diffeomorphism, ξμ, and translation, t(σ ), cannot be related without involving
fields as they have a different tensorial “nature”. Therefore, the field dependent redefinition
of parameters is needed. Consequently, there is no canonical transformation between such
formulations which give diffeomorphism and translation as gauge symmetries. And so, the
Hamiltonian formulation with the constraints that would produce diffeomorphism invariance
is not equivalent to the Hamiltonian formulation with translation in the tangent space as a
gauge symmetry.

From the Lagrangian point of view, using the 16 components of the tetrads (in the D = 4
case) we can restore the 10 components of the metric tensor but “not vice versa” [46].
Tetrads are “world” vectors and are invariant under diffeomorphism, as any vector or tensor
would be in a generally covariant theory. From the diffeomorphism invariance of tetrads we
can derive invariance under diffeomorphism for any combination of tetrads, in particular,
for e(α)

μ eν(α) = gμν we obtain

δdiff

(
e(α)
μ eν(α)

) = e(α)
μ

(−eρ(α)ξ
ρ
,ν − eν(α),ρξ

ρ
) + (−e(α)

ρ ξρ
,μ − e(α)

μ,ρξ
ρ
)
eν(α)

= −ξμ,ν + gρμ,νξ
ρ − ξν,μ + gρν,μξρ − gμν,ρξ

ρ = δdiff gμν. (108)

Note that in this case there is no need for a field dependent redefinition of gauge parameters.
We can also perform the inverse operation: from the diffeomorphism of the metric tensor

(which is the gauge invariance of Einstein-Hilbert (EH) action [10, 16, 17, 44]) we can derive
the diffeomorphism of tetrads (more details of this derivation and discussion about gauge
symmetries of the metric tensor and tetrads are given in [1]). But we cannot obtain Lorentz
or translational invariances in the tangent space of the EC action from the diffeomorphism of
the metric tensor. The reason for this is simply that the EC and EH actions are not equivalent
and neither are the corresponding Hamiltonians: they have a different number of phase-space
variables, different constraints, PB algebras, tensorial dimension of primary constraints and
different gauge invariances.

In the Lagrangian formalism, if we perform a change of variables that keep the equiv-
alence of two formulations, build differential identities and restore the invariance of each
formulation, then the invariance of one formulation must be derivable from the invariance
of another, using the same original redefinition of fields and without a redefinition of para-
meters. If a field dependent redefinition of parameters is needed, then the change of variables
that was performed is not canonical at the Hamiltonian level. Hence, such a change of vari-
ables should also be checked at the Lagrangian level: to test whether the formulation in the
new variables is equivalent to the original one. As an illustration of this, we again compare
metric General Relativity (GR) and ADM gravity. For metric GR the Hamiltonian [16, 17]
and Lagrangian [47] methods give the same gauge transformation, diffeomorphism. For the
ADM gravity the Hamiltonian and Lagrangian methods also produce the same invariance,
but one which is different from diffeomorphism (compare [48] and [49]). This is consistent
with the fact that the Hamiltonian and Lagrangian approaches give equivalent descriptions
of the same system. However, it is clear from [48] and [49], that the gauge transformations of
ADM gravity are not diffeomorphism. It is not a surprise as ADM gravity is not equivalent
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to GR (see [10, 17]).9 Only after a field dependent redefinition of parameters is performed, is
it possible to find an “equivalence between diffeomorphism and gauge transformations” of
ADM gravity [48]. The same redefinition is also needed at the Lagrangian level [49], which
according to the authors, demonstrates “the equivalence between the gauge and diff para-
meters by devising of the one to one mapping”. The same holds for the EC gravity: the field
dependent redefinition of parameters is needed to relate translation and diffeomorphism, so
only non-canonical transformations can relate two such Hamiltonian formulations.

An additional argument to support our point of view is related to differential identities
from which the invariances of a Lagrangian can be found. As we showed in [3], consider-
ing the EC Lagrangian as an example, all differential identities can be constructed from a
few basic differential identities. One out of the many identities leading to invariances of the
EC action, a gauge identity can be singled out using the following arguments. Differential
identities leading to gauge invariances for known theories are always the simplest: they are
built starting by contracting derivatives (∂μ) with the Euler derivatives (E). For example:
for Maxwell theory it is ∂μEμ, for Yang-Mills—∂μEμ(a), for the second order metric GR-
∂μEμν . Variation of the action with respect to the fundamental (basic) fields of a theory de-
fines a tensorial character of a differential identity. For the first order EC action the Euler
derivatives are Eμ(α) = δLEC

δeμ(α)
and Eμ(αβ) = δLEC

δωμ(αβ)
[3]. Thus, the basic (the most fundamen-

tal) differential identities can be constructed starting from ∂μEμ(α) and ∂μEμ(αβ) that lead to
the following identities I (α) = ∂μEμ(α) +· · · and I (αβ) = ∂μEμ(αβ) +· · · (see [3]), which give
rise to the translational and rotational invariances in the tangent space [11]. The Hamil-
tonian method applied to singular systems (the Dirac procedure) always leads to first class
constraints that allow the restoration of the gauge invariance. The Hamiltonian formulation
of the EC action leads to the first class constraints with the PB algebra that describe inter-
nal translation and rotation. This is clear from the first steps of the Dirac procedure and the
tensorial character of the primary first class constraints [1, 2]. The same result, translational
and rotational invariances, also follows from the analysis of basic differential identities at
the Lagrangian level [3].

Finally, we would like to note that in the Lagrangian approach all symmetries that can be
found seem to be on the same footing and what is only important, according to the Noether
theorem [19], is to find the minimum number of independent symmetries (or, which is the
same, differential identities—combinations of Euler derivatives). Why does the Hamiltonian
formulation give exactly this minimum number of independent symmetries? And why as
seems to be the case, do they always correspond to the basic differential identities of the
Lagrangian formulation? These questions need to be answered even after proof of closure is
completed and invariance is restored from the complete set of first class constraints. So, con-
trary to the authors of [51], we cannot conclude our paper by the unquestionable statement:
“the case is closed”.

9The constraint structure of the Dirac [17, 43] and Pirani, Schild and Skinner (PSS) [16, 50] Hamiltonian for-
mulations leads to diffeomorphism and they are connected by canonical transformations [44]. But the ADM
Hamiltonian is not related by any canonical transformation to the Dirac Hamiltonian (so also to PSS) and
its gauge symmetry is not diffeomorphism. By performing the inverse Legendre transformation (eliminating
momenta), the Dirac and PSS formulations lead back to the Einstein GR and the same equations of motion.
In the case of the ADM formulation the equations of motion are different and it is not evident that they are
equivalent to Einstein’s equations of GR, for example, in Numerical Relativity it is claimed that the type
of equations is changed from strongly hyperbolic (for Einstein’s) to weakly hyperbolic for ADM equations
(see [17] and references therein).
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Appendix A: ABC Properties

Here we collect properties of the ABC functions that were introduced in considering the
Hamiltonian formulation of N-bein gravity [1, 2]. They also turn out to be very useful in the
Lagrangian formalism [3].

These functions are generated by consecutive variation of the N-bein density

δ

δeν(β)

(
eeμ(α)

) = e
(
eμ(α)eν(β) − eμ(β)eν(α)

) = eAμ(α)ν(β), (A.1)

δ

δeλ(γ )

(
eAμ(α)ν(β)

) = eBλ(γ )μ(α)ν(β), (A.2)

δ

δeτ(σ )

(
eBλ(γ )μ(α)ν(β)

) = eCτ(σ)λ(γ )μ(α)ν(β), (A.3)

δ

δeε(ρ)

(
eCτ(σ)λ(γ )μ(α)ν(β)

) = eDε(ρ)τ(σ )λ(γ )μ(α)ν(β), . . . (A.4)

The first important property of these density functions is their total antisymmetry: inter-
change of two indices of the same nature (internal or external), e.g.

Aν(β)μ(α) = −Aν(α)μ(β) = −Aμ(β)ν(α) (A.5)

with the same being valid for B , C, D, etc. In particular, the presence of two equal indices
of the same “nature” (both internal or both external) makes the functions A, B , etc. equal
zero.

The second important property is their expansion using an external index

Bτ(ρ)μ(α)ν(β) = eτ(ρ)Aμ(α)ν(β) + eτ(α)Aμ(β)ν(ρ) + eτ(β)Aμ(ρ)ν(α), (A.6)

Cτ(ρ)λ(σ )μ(α)ν(β) = eτ(ρ)Bλ(σ)μ(α)ν(β) − eτ(σ )Bλ(α)μ(β)ν(ρ)

+ eτ(α)Bλ(β)μ(ρ)ν(σ ) − eτ(β)Bλ(ρ)μ(σ)ν(α) (A.7)

or an internal index

Bτ(ρ)μ(α)ν(β) = eτ(ρ)Aμ(α)ν(β) + eμ(ρ)Aν(α)τ(β) + eν(ρ)Aτ(α)μ(β), (A.8)

Cτ(ρ)λ(σ )μ(α)ν(β) = eτ(ρ)Bλ(σ)μ(α)ν(β) − eλ(ρ)Bμ(σ)ν(α)τ(β)

+ eμ(ρ)Bν(σ)τ(α)λ(β) − eν(ρ)Bτ(σ)λ(α)μ(β). (A.9)

The third property involves their derivatives

(
eAν(β)μ(α)

)
,σ = δ

δeλ(γ )

(
eAν(β)μ(α)

)
eλ(γ ),σ = eBλ(γ )ν(β)μ(α)eλ(γ ),σ , (A.10)
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(
eBτ(ρ)ν(β)μ(α)

)
,σ = δ

δeλ(γ )

(
eBτ(ρ)ν(β)μ(α)

)
eλ(γ ),σ = eCτ(ρ)λ(γ )ν(β)μ(α)eτ(ρ),σ . (A.11)

We also use the contraction of Bτ(ρ)μ(α)ν(β) (A.6) with a covariant eτ(λ):

eτ(λ)B
τ(ρ)μ(α)ν(β) = δ̃

ρ

λAμ(α)ν(β) + δ̃α
λAμ(β)ν(ρ) + δ̃

β

λ Aμ(ρ)ν(α). (A.12)

The above properties considerably simplify the calculations.

Appendix B: Solution of the Equation of Motion for �̂

To eliminate the �̂ field in the course of the Lagrangian or Hamiltonian reduction, we per-
form variation of (58) or (62) with respect to �̂ and solve this equation for �̂. The corre-
sponding part of the Lagrangian (Hamiltonian), quadratic and linear in �̂, after changing
dummy indices and performing some contractions is

L
(
�̂

)
= egqp�̂k

(mq)�̂m
(kp) + 2e�̂m

(pq)D̂m
pq (B.1)

where gqp = eq(α)e
(α)
p and

D̂m
pq = em(β)ep(β),q + em(β)e(γ )

q Np(γβ)0n(σ)π
n(σ). (B.2)

Note that there are no symmetries in this expression in pq indices (e.g., D̂m
pq �= −D̂m

qp ,
D̂m

pq �= D̂m
qp), which is clear from its explicit form. Of course, we can do further contrac-

tion in the second term of (B.2); but to find the solution it is not necessary as it can be
expressed in terms of the whole D̂m

pq and the separation of it into contributions with mo-
menta and spatial derivatives of covariant N-bein is sufficient at this stage and keep the
expressions in compact form.

Variations of a traceless antisymmetric field (see the fundamental PB (64)) is

δ�̂k
(mq)

δ�̂x
(yz)

= δx
k �̂

(mq)

(yz) − 1

D − 2

[
δx
y �̂

(mq)

(kz) − δx
z �̂

(mq)

(ky)

]
. (B.3)

It is clear from (B.3) that this expression is antisymmetric in mq and yz and equals to zero
if the traces of �̂k

(mq) or �̂x
(yz) are taken. Variation of (B.1) gives

�̂y
(px)gzp − �̂z

(px)gyp = D̂x
(yz) (B.4)

where

D̂x
(yz) = D̂x

yz − D̂x
zy − 1

D − 2

[
δx
y

(
D̂m

mz − D̂m
zm

)
− δx

z

(
D̂m

my − D̂m
ym

)]
, (B.5)

which is manifestly antisymmetric and traceless as it should be after variation with respect
to the field with such properties.

To solve (B.4) we use Einstein’s permutation [52]. To do this we must have three indices
of the same “nature”, either all external or all internal, and in the same position, covariant or
contravariant. We can achieve this by contracting (B.4) with gwx

gwx�̂y
(px)gzp − gwx�̂z

(px)gyp = gwxD̂
x
(yz). (B.6)
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Now we have combinations with three free external indices in covariant position and can
use the permutation (wyz) + (yzw) − (zwy) that gives us

2gyx�̂z
(px)gwp = gwxD̂

x
(yz) + gyxD̂

x
(zw) − gzxD̂

x
(wy). (B.7)

To find explicitly �̂z
(px), we have to use the Dirac inverse γ km = gkm − g0mg0k

g00 . (We
repeat, it is not a new variable, but a short-hand notation for a particular combination of
N-bein fields). After contracting (B.7) with γ kyγ mw we obtain the solution

�̂z
(mk) = 1

2

(
γ kbD̂m

(bz) − γ mbD̂k
(bz) − γ kyγ mwgzxD̂

x
(wy)

)
. (B.8)

Of course, solution for antisymmetric and traceless field is antisymmetric (RHS of (B.8) is
manifestly antisymmetric) and traceless (contracting (B.8) with δz

m or δz
k).

At this stage, we can check the D = 3 limit. The solution for �̂z
(mk) (B.8) was obtained

for all dimensions D > 2 and it has to vanish when D = 3. It is not difficult to check, taking
�̂z

(mk) from (B.8) and using the exact expressions of D̂m
(bz) (B.5) and D̂m

pq (B.2), that such
a limit is preserved

lim
D=3

�̂z
(mk) (π) = lim

D=3
�̂z

(mk)
(
e,s

) = 0. (B.9)

Actually, to demonstrate (B.9), it is not necessary to substitute the explicit form of D̂m
(bz).

When D = 3, there are only two independent components of �̂z
(mk) and they are �̂

(12)

1 =
�̂

(12)

2 = 0 because �̂z
(mk) is antisymmetric and traceless with only spatial indices.

Substitution of (B.8) back into (58) or (74) gives the reduced Lagrangian or Hamiltonian,
respectively.
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